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Abstract. The relations between integrable Poisson algebras with three generators and two-
dimensional symplectic manifolds are investigated. It is shown that for a given integrable
Poisson algebraA there exists a two-dimensional symplectic manifoldM ⊂ R3 such that the
Poisson algebra generated by the coordinates ofM coincides with the algebraA. Vice versa
the coordinates of a given smooth two-dimensional symplectic manifoldM embedded inR3

generate an integrable Poisson algebra. Moreover, smooth Poisson algebraic maps between
two integrable Poisson algebras are governed by equations involving the symplectic manifolds
corresponding to these algebras.

Poisson algebras have been discussed widely in Hamiltonian mechanics and in the
quantization of classical systems, such as canonical quantization and Moyal product
quantization, see for example [1–5]. In this paper we investigate the relations between
symplectic manifolds and Poisson algebras. We find that there exist general relations
between integrable Poisson algebras with three generators and two-dimensional symplectic
manifolds.

We first recall some basic knowledge of symplectic geometry. A symplectic manifold
(M,ω) is an even-dimensional manifoldM equipped with a symplectic 2-formω, see for
example [6–9]. Let d denote the exterior derivative onM. By definition a symplectic form
ω onM is closed, dω = 0, and non-degenerate,X cω = 0⇒ X = 0, whereX is a (smooth)
vector onM and c denotes the left inner product defined by(X cω)(Y ) = ω(X, Y ) for any
two vectorsX andY onM. The non-degeneracy means that for every tangent spaceTxM,
x ∈ M and withX ∈ TxM, the relationωx(X, Y ) = 0 for all Y ∈ TxM impliesX = 0.

Infinitesimal symplectic diffeomorphisms are given by vectors. A vectorX on M
corresponds to an infinitesimal canonical transformation if and only if the Lie derivative of
ω with respect toX vanishes,

LXω = X c dω + d(X cω) = 0. (1)

A vectorX satisfying (1) is said to be a Hamiltonian vector field.
Sinceω is closed, it follows from (1) that a vectorX is a Hamiltonian vector field if

and only ifX cω is closed. Sinceω is non-degenerate, this gives rise to an isomorphism
between vector fieldsX and 1-forms onM given byX → X cω. Let F(M) denote the
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real-valued smooth functions onM. For anf ∈ F(M), there exists a Hamiltonian vector
field Xf (unique up to a sign on the right-hand side of the following equation) satisfying

Xf cω = −df. (2)

Xf is called the Hamiltonian vector field associated withf .
Let f, g ∈ F(M). The Lie bracket [Xf ,Xg] is the Hamiltonian vector field of

ω(Xf ,Xg), in the sense that

[Xf ,Xg] cω = LXf (Xg cω)−Xg c (LXf ω)
= Xf c d(Xg cω)+ d(Xf c (Xg cω))−Xg c d(Xf cω)
= − d(ω(Xf ,Xg))

where the Cartan formula for the Lie derivativeLX = iX ◦ d+ d ◦ iX of a vectorX has
been used. The function−ω(Xf ,Xg) is called the Poisson bracket off andg and denoted
by [f, g]PB,

[f, g]PB = −ω(Xf ,Xg) = −Xf g. (3)

Sinceω is closed, the so-defined Poisson bracket satisfies the Jacobi identity

[f, [g, h]PB]PB+ [g, [h, f ]PB]PB+ [h, [f, g]PB]PB = 0.

Therefore, under the Poisson bracket operation the spaceC∞(M) of all smooth functions
on (M,ω) is a Lie algebra, called the Poisson algebra of (M,ω).

In general, one calls a Poisson algebra any associative, commutative algebraA overR
with unit, equipped with a bilinear map [, ]PB, called a Poisson bracket satisfying:

(1) antisymmetry

[f, g]PB = −[g, f ]PB

(2) derivation property

[fg, h]PB = f [g, h]PB+ g[f, h]PB

(3) Jacobi identity

[f, [g, h]PB]PB+ [g, [h, f ]PB]PB+ [h, [f, g]PB]PB = 0

for any f, g, h ∈ A.
Now let A be a Poisson algebra with three generators(x1, x2, x3) = x and a Poisson

bracket of the form

[xi, xj ]PB =
3∑
k=1

εijkfk (4)

whereεijk is the completely antisymmetric tensor andfi , i = 1, 2, 3, are smooth real-valued
functions ofx, restricted to satisfy the Jacobi identity:

[x1, [x2, x3]PB]PB+ [x2, [x3, x1]PB]PB+ [x3, [x1, x2]PB]PB

= ∂f1

∂x2
f3− ∂f1

∂x3
f2+ ∂f2

∂x3
f1− ∂f2

∂x1
f3+ ∂f3

∂x1
f2− ∂f3

∂x2
f1 = 0.

We say that the Poisson algebra (4) is integrable iffi satisfies

∂fi

∂xj
= ∂fj

∂xi
i, j = 1, 2, 3 (5)

and at least one offi , i = 1, 2, 3, is non-zero. Obviously the integrability condition (5) is
a sufficient condition for the Poisson algebra (4) to satisfy the Jacobi identity.
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Let F be the space of smooth real-valued functions ofx, x ∈ R3. We consider the
realization of the Poisson algebraA in R3 and will not distinguish between the symbolsxi
of the coordinates ofR3 and the generators ofA. In the followingM will always denote a
smooth two-dimensional manifold smoothly embedded inR3.

Theorem 1. For a given integrable Poisson algebraA there exists a two-dimensional
symplectic manifoldM described by an equation of the formF(x) = c, x ∈ R3, with
F ∈ F and c an arbitrary real number, such that the Poisson algebra generated by the
coordinate functionsx1, x2, x3 of R3 restricted toM coincides with the algebraA.

Proof. A general integrable Poisson algebra is of the form (4),

[xi, xj ]PB =
3∑
k=1

εijkfk

where fi , i = 1, 2, 3, satisfy the integrability condition (5). What we have to show is
that this Poisson algebra can be described by the symplectic geometry on a suitable two-
dimensional symplectic manifold (M,ω), in the sense that the above Poisson bracket can be
described by the formula (3), i.e. the Poisson bracket [xi, xj ]PB is given by the Hamiltonian
vector fieldXxi associated withxi such that

[xi, xj ]PB = −Xxi xj =
3∑
k=1

εijkfk (6)

with xi the coordinates of the two-dimensional manifoldM in R3.
Let X′xi ∈ R3 be given by

X′xi ≡
3∑

j,k=1

εijkfj
∂

∂xk
. (7)

ThenX′xi satisfies

−X′xi xj =
3∑
k=1

εijkfk.

A general 2-form onR3 can be written as

ω′ = −1

2

3∑
i,j,k=1

εijkhi dxj ∧ dxk (8)

wherehi ∈ F , i = 1, 2, 3. We have to prove thatx can be restricted to a suitable two-
dimensional manifoldM ⊂ R3 in such a way thatX′xi coincides with the Hamiltonian vector
field Xxi andω′ is the corresponding symplectic form onM.

A 2-form on a two-dimensional manifold is always closed. What we should then check
is that there existsM ⊂ R3 such that forx restricted toM the formula (2) holds forf = xi ,
i.e.

X′xi cω′ = −dxi xi ∈ M, i = 1, 2, 3. (9)

Substituting formulae (8) and (7) into (9) we get

X′xi cω′ = −
3∑

j,k=1

εijkfj
∂

∂xk
c 1

2

3∑
l,m,n=1

εlmnhl dxm ∧ dxn
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= − 1

2

3∑
lmnjk

εijkεlmnfjhl(δkm dxn − δkn dxm)

= −
3∑
lnjk

εijkεlknfjhl dxn = −dxi.

That is,

(1− f2h2− f3h3) dx1+ f2h1 dx2+ f3h1 dx3 = 0

(1− f3h3− f1h1) dx2+ f3h2 dx3+ f1h2 dx1 = 0 (10)

(1− f1h1− f2h2) dx3+ f1h3 dx1+ f2h3 dx2 = 0.

Let D be the coefficient determinant of the dxi in system (10). By a suitable choice of
h1, h2 andh3 we can obtain thatD is zero. This is in fact equivalent to the equation

f1h1+ f2h2+ f3h3 = 1 (11)

being satisfied. The fact thatD = 0 implies that there indeed exists anM as above.
Substituting condition (11) into (10) we get

f1 dx1+ f2 dx2+ f3 dx3 = 0. (12)

From assumption (5) we know that the differential equation (12) is exactly solvable, in
the sense that there exists a smooth (potential) functionF ∈ F and a constantc such that

F(x) = c (13)

and∂F/∂xi = fi . The above manifoldM is then described by (13).
Therefore for any given integrable Poisson algebraA there always exists a two-

dimensional manifold of the form (13) on whichX′xi in (7) is a Hamiltonian vector field
and the Poisson bracket of the algebraA is given byX′xi according to formula (3),

[xi, xj ]PB = −X′xi xj =
3∑
k=1

εijkfk.

The two-dimensional manifold defined by (13) is unique (oncec is given). Hence an
integrable Poisson algebra is uniquely given by the two-dimensional manifoldM described
by F(x) = c. �

Before investigating the Poisson algebraic structures on general two-dimensional
symplectic manifolds, we see that ifM is a two-dimensional manifold embedded inR3

andω is a symplectic form onM, then forα(x) 6= 0, ∀ x ∈ R3, α−1ω is also a symplectic
form on M. For f, g, h ∈ F(M), if [f, g]PB = h on the symplectic manifold (M,ω),
then on the symplectic manifold (M,α−1ω), α(x) 6= 0, ∀ x ∈ R3, one has [f, g]PB = αh.
Therefore, we say that on a two-dimensional manifold embedded inR3, a Poisson algebra
A is, by definition, equivalent to a Poisson algebraB if the Poisson bracket onA is the
same as that onB, multiplied by some common non-zero factorα(x), ∀ x ∈ R3.

Theorem 2. For a given smooth two-dimensional symplectic manifoldM embedded inR3

of the formF(x) = 0, F ∈ F , x ∈ R3, x generates a Poisson algebra with the following
Poisson bracket:

[xi, xj ]PB = α(x)
3∑
k=1

εijk
∂F (x)

∂xk
(14)

α(x) 6= 0, ∀ x ∈ R3. This is unique in the sense of the above algebraic equivalence.



Integrable Poisson algebras and two-dimensional manifolds 1215

Proof. Let the symplectic formω onM be given as

ω = −1

2

3∑
i,j,k=1

εijkh
′
i dxj ∧ dxk.

Let Xx be a vector field onM of the form

Xxi =
3∑

j,k=1

εijkf
′
j

∂

∂xk
i = 1, 2, 3 (15)

for someh′i , f
′
i ∈ F , i = 1, 2, 3. In order forXx to be the Hamiltonian vector field

associated withω we must haveXxi cω = −dxi , thus we must have that

(1− f ′2h′2− f ′3h′3) dx1+ f ′2h′1 dx2+ f ′3h′1 dx3 = 0

(1− f ′3h′3− f ′1h′1) dx2+ f ′3h′2 dx3+ f ′1h′2 dx1 = 0 (16)

(1− f ′1h′1− f ′2h′2) dx3+ f ′1h′3 dx1+ f ′2h′3 dx2 = 0

where dx are not independent sinceF(x) = 0 implies

3∑
i=1

∂F (x)

∂xi
dxi = 0. (17)

Therefore, the coefficient determinant of the system (16) is zero, which gives

3∑
i=1

f ′i h
′
i = 1.

Hence the system of equations (16) becomes

3∑
i=1

f ′i dxi = 0. (18)

Equations (17) and (18) give rise to

f ′i (x) = α(x)
∂F (x)

∂xi
i = 1, 2, 3 (19)

whereα(x) 6= 0, ∀ x ∈ R3.
From (19) the Hamiltonian vector field (15) takes the form

Xxi = α(x)
3∑

j,k=1

εijk
∂F (x)

∂xj

∂

∂xk
. (20)

Using formula (3) we have

[xi, xj ]PB = α(x)
3∑
k=1

εijk
∂F (x)

∂xk
. (21)

This is just formula (14). �
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Theorem 2 is more complete and general than the conclusion in [10]. When it is applied
to such manifolds as the undeformed (respectively,q-deformed) two-dimensional sphere,
the one sheet hyperboloid and the elliptic paraboloid, one gets [10] the Lie (respectively,
q-deformed) algebra ofSU(2), SU(1, 1) and the harmonic oscillator algebraH(4) [11].
Here one notes that ifF(x) = 0 defines a smooth two-dimensional symplectic manifoldM

in R3, thenα(x)F (x) = 0, α(x) 6= 0, ∀ x ∈ R3, also defines the same manifoldM. By
formula (14) we see thatF(x) = 0 andα(x)F (x) = 0 give rise to the same Poisson algebra
under the algebraic equivalence we stated before theorem 2.

As F ∈ F , we have that

∂

∂xj

(
∂F (x)

∂xi

)
= ∂

∂xi

(
∂F (x)

∂xj

)
i, j = 1, 2, 3.

Therefore, the Poisson algebra given by (14) is by definition integrable and it is uniquely
given by the manifoldM. It is also direct to check thatF(x) is the centre of the Poisson
algebra, i.e. [xi, F (x)]PB = 0, i = 1, 2, 3. Moreover, from the Poisson algebraic relations
(14) one has

[f, g]PB(x) = −
3∑

i,j,k=1

εijk
∂f

∂xi

∂F

∂xj

∂g

∂xk
(x) (22)

for f, g ∈ F .
Theorems 1 and 2 establish the correspondence between two-dimensional symplectic

manifolds and Poisson algebras with three generators. In what follows we study some
properties related to smooth Poisson algebraic maps.

Let A (respectivelyB) be two integrable Poisson algebras with related two-dimensional
manifoldsMA (respectivelyMB) defined byFA(x) = 0 (respectivelyFB(y) = 0) in R3,
wherex = (x1, x2, x3) (respectivelyy = (y1, y2, y3)) are the generators of the algebraA
(respectivelyB). We call a smooth map̃y(x), x as before and̃y a generator of the Poisson
algebraB, a smooth Poisson algebraic map.

Theorem 3. If the smooth Poisson algebraic mapỹ(x) = (ỹ1, ỹ2, ỹ3)(x) between integrable
Poisson algebrasA andB satisfies the commutator relations ofB, thenỹ satisfiesFB(ỹ) = 0.

Proof. From theorem 2 the Poisson algebraA is given by

[xi, xj ]PB =
3∑

i,j,k=1

εijk
∂FA(x)

∂xk
.

Using formula (22) we have

[ỹi , ỹj ]PB(x) = −
3∑

l,m,n=1

εlmn
∂ỹi

∂xl

∂FA

∂xm

∂ỹj

∂xn
(x). (23)

SinceFA(x) = 0, we have that thexi , i = 1, 2, 3, are not independent. Without loss of
generality, we takex1 andx2 to be independent. By using the relation

3∑
i=1

∂FA(x)

∂xi
dxi = 0

equation (23) becomes

[ỹi , ỹj ]PB(x) = ∂FA

∂x3

(
∂ỹi

∂x1

∂ỹj

∂x2
− ∂ỹi

∂x2

∂ỹj

∂x1

)
(x). (24)
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From theorem 2 the Poisson algebraB is given by

[yi, yj ]PB =
3∑

i,j,k=1

εijk
∂FB(y)

∂yk
.

Hence if the smooth map̃y(x) = (ỹ1, ỹ2, ỹ3)(x) satisfies the commutator relation of the
algebraB, then

[ỹi , ỹj ]PB(x) =
3∑

i,j,k=1

εijk
∂FB(ỹ)

∂ỹk
(x). (25)

From (24) and (25) we obtain

∂FA

∂x3

(
∂ỹi

∂x1

∂ỹj

∂x2
− ∂ỹi

∂x2

∂ỹj

∂x1

)
=

3∑
i,j,k=1

εijk
∂FB(ỹ)

∂ỹk
. (26)

Equation (26) represents three different equations fori = 1, j = 2; i = 2, j = 3; and
i = 3, j = 1. Multiplying these equations by∂ỹ3/∂xl , ∂ỹ1/∂xl and ∂ỹ2/∂xl , l = 1, 2,
respectively, and summing these equations together we get

∂FB(ỹ)

∂xl
= 0 l = 1, 2.

ThereforeFB(ỹ) is independent ofxl , l = 1, 2, and thusFB(ỹ) = constant. This constant
can be taken to be zero, since addition of a constant does not change the Poisson algebraic
structure of the manifold. �

Theorem 4. If the map ỹ(x) = (ỹ1, ỹ2, ỹ3)(x) satisfiesFB(ỹ) = 0, wherex satisfies
FA(x) = 0, thenỹ generates the Poisson algebraB.

Proof. From theorem 2 we know that there is a unique Poisson algebraB associated with
the manifoldMB (up to the algebraic equivalence). Hence ifỹ satisfiesFB(ỹ) = 0, thenỹ
generates the algebraB. �

Summarizing, we have discussed the relations between integrable Poisson algebraic
structures and two-dimensional symplectic manifolds and have proved that there is a unique
relation between integrable Poisson algebras and two-dimensional symplectic manifolds. We
have also shown that a sufficient and necessary condition for a smooth Poisson algebraic
map ỹ(x) to act from an integrable Poisson algebraA into an integrable Poisson algebraB
is that bothFA(x) = 0 andFB(ỹ) = 0 are satisfied. The latter conclusions can be extended
to the infinite-dimensional case, see [12].
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