Integrable Poisson algebras and two-dimensional manifolds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 311211
(http://iopscience.iop.org/0305-4470/31/4/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:13

Please note that terms and conditions apply.

Integrable Poisson algebras and two-dimensional manifolds

Sergio Albeverio \dagger and Shao-Ming Fei \ddagger
Institute of Mathematics, Ruhr-University Bochum, D-44780 Bochum, Germany

Received 1 April 1997

Abstract

The relations between integrable Poisson algebras with three generators and twodimensional symplectic manifolds are investigated. It is shown that for a given integrable Poisson algebra \mathcal{A} there exists a two-dimensional symplectic manifold $M \subset \mathbb{R}^{3}$ such that the Poisson algebra generated by the coordinates of M coincides with the algebra \mathcal{A}. Vice versa the coordinates of a given smooth two-dimensional symplectic manifold M embedded in \mathbb{R}^{3} generate an integrable Poisson algebra. Moreover, smooth Poisson algebraic maps between two integrable Poisson algebras are governed by equations involving the symplectic manifolds corresponding to these algebras.

Poisson algebras have been discussed widely in Hamiltonian mechanics and in the quantization of classical systems, such as canonical quantization and Moyal product quantization, see for example [1-5]. In this paper we investigate the relations between symplectic manifolds and Poisson algebras. We find that there exist general relations between integrable Poisson algebras with three generators and two-dimensional symplectic manifolds.

We first recall some basic knowledge of symplectic geometry. A symplectic manifold (M, ω) is an even-dimensional manifold M equipped with a symplectic 2 -form ω, see for example [6-9]. Let d denote the exterior derivative on M. By definition a symplectic form ω on M is closed, $\mathrm{d} \omega=0$, and non-degenerate, $X\rfloor \omega=0 \Rightarrow X=0$, where X is a (smooth) vector on M and \rfloor denotes the left inner product defined by $(X\rfloor \omega)(Y)=\omega(X, Y)$ for any two vectors X and Y on M. The non-degeneracy means that for every tangent space $T_{x} M$, $x \in M$ and with $X \in T_{x} M$, the relation $\omega_{x}(X, Y)=0$ for all $Y \in T_{x} M$ implies $X=0$.

Infinitesimal symplectic diffeomorphisms are given by vectors. A vector X on M corresponds to an infinitesimal canonical transformation if and only if the Lie derivative of ω with respect to X vanishes,

$$
\begin{equation*}
\left.\left.\mathcal{L}_{X} \omega=X\right\rfloor \mathrm{~d} \omega+\mathrm{d}(X\rfloor \omega\right)=0 \tag{1}
\end{equation*}
$$

A vector X satisfying (1) is said to be a Hamiltonian vector field.
Since ω is closed, it follows from (1) that a vector X is a Hamiltonian vector field if and only if $X \downharpoonleft \omega$ is closed. Since ω is non-degenerate, this gives rise to an isomorphism between vector fields X and 1-forms on M given by $X \rightarrow X\rfloor \omega$. Let $\mathcal{F}(M)$ denote the
\dagger SFB 237 (Essen-Bochum-Düsseldorf); BiBoS (Bielefeld-Bochum); CERFIM Locarno (Switzerland).
\ddagger Alexander von Humboldt-Stiftung fellow. On leave from Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.
real-valued smooth functions on M. For an $f \in \mathcal{F}(M)$, there exists a Hamiltonian vector field X_{f} (unique up to a sign on the right-hand side of the following equation) satisfying

$$
\begin{equation*}
\left.X_{f}\right\rfloor \omega=-\mathrm{d} f \tag{2}
\end{equation*}
$$

X_{f} is called the Hamiltonian vector field associated with f.
Let $f, g \in \mathcal{F}(M)$. The Lie bracket $\left[X_{f}, X_{g}\right]$ is the Hamiltonian vector field of $\omega\left(X_{f}, X_{g}\right)$, in the sense that

$$
\begin{aligned}
{\left.\left[X_{f}, X_{g}\right]\right\rfloor \omega } & \left.\left.=\mathcal{L}_{X_{f}}\left(X_{g}\right\rfloor \omega\right)-X_{g}\right\rfloor\left(\mathcal{L}_{X_{f}} \omega\right) \\
& \left.\left.\left.\left.\left.\left.=X_{f}\right\rfloor \mathrm{~d}\left(X_{g}\right\rfloor \omega\right)+\mathrm{d}\left(X_{f}\right\rfloor\left(X_{g}\right\rfloor \omega\right)\right)-X_{g}\right\rfloor \mathrm{~d}\left(X_{f}\right\rfloor \omega\right) \\
& =-\mathrm{d}\left(\omega\left(X_{f}, X_{g}\right)\right)
\end{aligned}
$$

where the Cartan formula for the Lie derivative $\mathcal{L}_{X}=i_{X} \circ \mathrm{~d}+\mathrm{d} \circ i_{X}$ of a vector X has been used. The function $-\omega\left(X_{f}, X_{g}\right)$ is called the Poisson bracket of f and g and denoted by $[f, g]_{\mathrm{PB}}$,

$$
\begin{equation*}
[f, g]_{\mathrm{PB}}=-\omega\left(X_{f}, X_{g}\right)=-X_{f} g \tag{3}
\end{equation*}
$$

Since ω is closed, the so-defined Poisson bracket satisfies the Jacobi identity

$$
\left[f,[g, h]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[g,[h, f]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[h,[f, g]_{\mathrm{PB}}\right]_{\mathrm{PB}}=0
$$

Therefore, under the Poisson bracket operation the space $C^{\infty}(M)$ of all smooth functions on (M, ω) is a Lie algebra, called the Poisson algebra of (M, ω).

In general, one calls a Poisson algebra any associative, commutative algebra \mathcal{A} over \mathbb{R} with unit, equipped with a bilinear map $[,]_{\mathrm{PB}}$, called a Poisson bracket satisfying:
(1) antisymmetry

$$
[f, g]_{\mathrm{PB}}=-[g, f]_{\mathrm{PB}}
$$

(2) derivation property

$$
[f g, h]_{\mathrm{PB}}=f[g, h]_{\mathrm{PB}}+g[f, h]_{\mathrm{PB}}
$$

(3) Jacobi identity

$$
\left[f,[g, h]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[g,[h, f]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[h,[f, g]_{\mathrm{PB}}\right]_{\mathrm{PB}}=0
$$

for any $f, g, h \in \mathcal{A}$.
Now let \mathcal{A} be a Poisson algebra with three generators $\left(x_{1}, x_{2}, x_{3}\right)=x$ and a Poisson bracket of the form

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=\sum_{k=1}^{3} \epsilon_{i j k} f_{k} \tag{4}
\end{equation*}
$$

where $\epsilon_{i j k}$ is the completely antisymmetric tensor and $f_{i}, i=1,2,3$, are smooth real-valued functions of x, restricted to satisfy the Jacobi identity:
$\left[x_{1},\left[x_{2}, x_{3}\right]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[x_{2},\left[x_{3}, x_{1}\right]_{\mathrm{PB}}\right]_{\mathrm{PB}}+\left[x_{3},\left[x_{1}, x_{2}\right]_{\mathrm{PB}}\right]_{\mathrm{PB}}$

$$
=\frac{\partial f_{1}}{\partial x_{2}} f_{3}-\frac{\partial f_{1}}{\partial x_{3}} f_{2}+\frac{\partial f_{2}}{\partial x_{3}} f_{1}-\frac{\partial f_{2}}{\partial x_{1}} f_{3}+\frac{\partial f_{3}}{\partial x_{1}} f_{2}-\frac{\partial f_{3}}{\partial x_{2}} f_{1}=0
$$

We say that the Poisson algebra (4) is integrable if f_{i} satisfies

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}} \quad i, j=1,2,3 \tag{5}
\end{equation*}
$$

and at least one of $f_{i}, i=1,2,3$, is non-zero. Obviously the integrability condition (5) is a sufficient condition for the Poisson algebra (4) to satisfy the Jacobi identity.

Let \mathcal{F} be the space of smooth real-valued functions of $x, x \in \mathbb{R}^{3}$. We consider the realization of the Poisson algebra \mathcal{A} in \mathbb{R}^{3} and will not distinguish between the symbols x_{i} of the coordinates of \mathbb{R}^{3} and the generators of \mathcal{A}. In the following M will always denote a smooth two-dimensional manifold smoothly embedded in \mathbb{R}^{3}.

Theorem 1. For a given integrable Poisson algebra \mathcal{A} there exists a two-dimensional symplectic manifold M described by an equation of the form $F(x)=c, x \in \mathbb{R}^{3}$, with $F \in \mathcal{F}$ and c an arbitrary real number, such that the Poisson algebra generated by the coordinate functions x_{1}, x_{2}, x_{3} of \mathbb{R}^{3} restricted to M coincides with the algebra \mathcal{A}.

Proof. A general integrable Poisson algebra is of the form (4),

$$
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=\sum_{k=1}^{3} \epsilon_{i j k} f_{k}
$$

where $f_{i}, i=1,2,3$, satisfy the integrability condition (5). What we have to show is that this Poisson algebra can be described by the symplectic geometry on a suitable twodimensional symplectic manifold (M, ω), in the sense that the above Poisson bracket can be described by the formula (3), i.e. the Poisson bracket $\left[x_{i}, x_{j}\right]_{\mathrm{PB}}$ is given by the Hamiltonian vector field $X_{x_{i}}$ associated with x_{i} such that

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=-X_{x_{i}} x_{j}=\sum_{k=1}^{3} \epsilon_{i j k} f_{k} \tag{6}
\end{equation*}
$$

with x_{i} the coordinates of the two-dimensional manifold M in \mathbb{R}^{3}.
Let $X_{x_{i}}^{\prime} \in \mathbb{R}^{3}$ be given by

$$
\begin{equation*}
X_{x_{i}}^{\prime} \equiv \sum_{j, k=1}^{3} \epsilon_{i j k} f_{j} \frac{\partial}{\partial x_{k}} . \tag{7}
\end{equation*}
$$

Then $X_{x_{i}}^{\prime}$ satisfies

$$
-X_{x_{i}}^{\prime} x_{j}=\sum_{k=1}^{3} \epsilon_{i j k} f_{k} .
$$

A general 2-form on \mathbb{R}^{3} can be written as

$$
\begin{equation*}
\omega^{\prime}=-\frac{1}{2} \sum_{i, j, k=1}^{3} \epsilon_{i j k} h_{i} \mathrm{~d} x_{j} \wedge \mathrm{~d} x_{k} \tag{8}
\end{equation*}
$$

where $h_{i} \in \mathcal{F}, i=1,2,3$. We have to prove that x can be restricted to a suitable twodimensional manifold $M \subset \mathbb{R}^{3}$ in such a way that $X_{x_{i}}^{\prime}$ coincides with the Hamiltonian vector field $X_{x_{i}}$ and ω^{\prime} is the corresponding symplectic form on M.

A 2-form on a two-dimensional manifold is always closed. What we should then check is that there exists $M \subset \mathbb{R}^{3}$ such that for x restricted to M the formula (2) holds for $f=x_{i}$, i.e.

$$
\begin{equation*}
X_{x_{i}}^{\prime} \downharpoonleft \omega^{\prime}=-\mathrm{d} x_{i} \quad x_{i} \in M, i=1,2,3 . \tag{9}
\end{equation*}
$$

Substituting formulae (8) and (7) into (9) we get

$$
\left.\left.X_{x_{i}}^{\prime}\right\rfloor \omega^{\prime}=-\sum_{j, k=1}^{3} \epsilon_{i j k} f_{j} \frac{\partial}{\partial x_{k}}\right\rfloor \frac{1}{2} \sum_{l, m, n=1}^{3} \epsilon_{l m n} h_{l} \mathrm{~d} x_{m} \wedge \mathrm{~d} x_{n}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \sum_{l m n j k}^{3} \epsilon_{i j k} \epsilon_{l m n} f_{j} h_{l}\left(\delta_{k m} \mathrm{~d} x_{n}-\delta_{k n} \mathrm{~d} x_{m}\right) \\
& =-\sum_{l n j k}^{3} \epsilon_{i j k} \epsilon_{l k n} f_{j} h_{l} \mathrm{~d} x_{n}=-\mathrm{d} x_{i}
\end{aligned}
$$

That is,

$$
\begin{align*}
& \left(1-f_{2} h_{2}-f_{3} h_{3}\right) \mathrm{d} x_{1}+f_{2} h_{1} \mathrm{~d} x_{2}+f_{3} h_{1} \mathrm{~d} x_{3}=0 \\
& \left(1-f_{3} h_{3}-f_{1} h_{1}\right) \mathrm{d} x_{2}+f_{3} h_{2} \mathrm{~d} x_{3}+f_{1} h_{2} \mathrm{~d} x_{1}=0 \tag{10}\\
& \left(1-f_{1} h_{1}-f_{2} h_{2}\right) \mathrm{d} x_{3}+f_{1} h_{3} \mathrm{~d} x_{1}+f_{2} h_{3} \mathrm{~d} x_{2}=0
\end{align*}
$$

Let D be the coefficient determinant of the $\mathrm{d} x_{i}$ in system (10). By a suitable choice of h_{1}, h_{2} and h_{3} we can obtain that D is zero. This is in fact equivalent to the equation

$$
\begin{equation*}
f_{1} h_{1}+f_{2} h_{2}+f_{3} h_{3}=1 \tag{11}
\end{equation*}
$$

being satisfied. The fact that $D=0$ implies that there indeed exists an M as above.
Substituting condition (11) into (10) we get

$$
\begin{equation*}
f_{1} \mathrm{~d} x_{1}+f_{2} \mathrm{~d} x_{2}+f_{3} \mathrm{~d} x_{3}=0 \tag{12}
\end{equation*}
$$

From assumption (5) we know that the differential equation (12) is exactly solvable, in the sense that there exists a smooth (potential) function $F \in \mathcal{F}$ and a constant c such that

$$
\begin{equation*}
F(x)=c \tag{13}
\end{equation*}
$$

and $\partial F / \partial x_{i}=f_{i}$. The above manifold M is then described by (13).
Therefore for any given integrable Poisson algebra \mathcal{A} there always exists a twodimensional manifold of the form (13) on which $X_{x_{i}}^{\prime}$ in (7) is a Hamiltonian vector field and the Poisson bracket of the algebra \mathcal{A} is given by $X_{x_{i}}^{\prime}$ according to formula (3),

$$
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=-X_{x_{i}}^{\prime} x_{j}=\sum_{k=1}^{3} \epsilon_{i j k} f_{k}
$$

The two-dimensional manifold defined by (13) is unique (once c is given). Hence an integrable Poisson algebra is uniquely given by the two-dimensional manifold M described by $F(x)=c$.

Before investigating the Poisson algebraic structures on general two-dimensional symplectic manifolds, we see that if M is a two-dimensional manifold embedded in \mathbb{R}^{3} and ω is a symplectic form on M, then for $\alpha(x) \neq 0, \forall x \in \mathbb{R}^{3}, \alpha^{-1} \omega$ is also a symplectic form on M. For $f, g, h \in \mathcal{F}(M)$, if $[f, g]_{\text {PB }}=h$ on the symplectic manifold (M, ω), then on the symplectic manifold $\left(M, \alpha^{-1} \omega\right), \alpha(x) \neq 0, \forall x \in \mathbb{R}^{3}$, one has $[f, g]_{\mathrm{PB}}=\alpha h$. Therefore, we say that on a two-dimensional manifold embedded in \mathbb{R}^{3}, a Poisson algebra A is, by definition, equivalent to a Poisson algebra B if the Poisson bracket on A is the same as that on B, multiplied by some common non-zero factor $\alpha(x), \forall x \in \mathbb{R}^{3}$.

Theorem 2. For a given smooth two-dimensional symplectic manifold M embedded in \mathbb{R}^{3} of the form $F(x)=0, F \in \mathcal{F}, x \in \mathbb{R}^{3}, x$ generates a Poisson algebra with the following Poisson bracket:

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=\alpha(x) \sum_{k=1}^{3} \epsilon_{i j k} \frac{\partial F(x)}{\partial x_{k}} \tag{14}
\end{equation*}
$$

$\alpha(x) \neq 0, \forall x \in \mathbb{R}^{3}$. This is unique in the sense of the above algebraic equivalence.

Proof. Let the symplectic form ω on M be given as

$$
\omega=-\frac{1}{2} \sum_{i, j, k=1}^{3} \epsilon_{i j k} h_{i}^{\prime} \mathrm{d} x_{j} \wedge \mathrm{~d} x_{k}
$$

Let X_{x} be a vector field on M of the form

$$
\begin{equation*}
X_{x_{i}}=\sum_{j, k=1}^{3} \epsilon_{i j k} f_{j}^{\prime} \frac{\partial}{\partial x_{k}} \quad i=1,2,3 \tag{15}
\end{equation*}
$$

for some $h_{i}^{\prime}, f_{i}^{\prime} \in \mathcal{F}, i=1,2,3$. In order for X_{x} to be the Hamiltonian vector field associated with ω we must have $X_{x_{i}} \downharpoonleft \omega=-\mathrm{d} x_{i}$, thus we must have that

$$
\begin{align*}
& \left(1-f_{2}^{\prime} h_{2}^{\prime}-f_{3}^{\prime} h_{3}^{\prime}\right) \mathrm{d} x_{1}+f_{2}^{\prime} h_{1}^{\prime} \mathrm{d} x_{2}+f_{3}^{\prime} h_{1}^{\prime} \mathrm{d} x_{3}=0 \\
& \left(1-f_{3}^{\prime} h_{3}^{\prime}-f_{1}^{\prime} h_{1}^{\prime}\right) \mathrm{d} x_{2}+f_{3}^{\prime} h_{2}^{\prime} \mathrm{d} x_{3}+f_{1}^{\prime} h_{2}^{\prime} \mathrm{d} x_{1}=0 \tag{16}\\
& \left(1-f_{1}^{\prime} h_{1}^{\prime}-f_{2}^{\prime} h_{2}^{\prime}\right) \mathrm{d} x_{3}+f_{1}^{\prime} h_{3}^{\prime} \mathrm{d} x_{1}+f_{2}^{\prime} h_{3}^{\prime} \mathrm{d} x_{2}=0
\end{align*}
$$

where $\mathrm{d} x$ are not independent since $F(x)=0$ implies

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\partial F(x)}{\partial x_{i}} \mathrm{~d} x_{i}=0 . \tag{17}
\end{equation*}
$$

Therefore, the coefficient determinant of the system (16) is zero, which gives

$$
\sum_{i=1}^{3} f_{i}^{\prime} h_{i}^{\prime}=1
$$

Hence the system of equations (16) becomes

$$
\begin{equation*}
\sum_{i=1}^{3} f_{i}^{\prime} \mathrm{d} x_{i}=0 \tag{18}
\end{equation*}
$$

Equations (17) and (18) give rise to

$$
\begin{equation*}
f_{i}^{\prime}(x)=\alpha(x) \frac{\partial F(x)}{\partial x_{i}} \quad i=1,2,3 \tag{19}
\end{equation*}
$$

where $\alpha(x) \neq 0, \forall x \in \mathbb{R}^{3}$.
From (19) the Hamiltonian vector field (15) takes the form

$$
\begin{equation*}
X_{x_{i}}=\alpha(x) \sum_{j, k=1}^{3} \epsilon_{i j k} \frac{\partial F(x)}{\partial x_{j}} \frac{\partial}{\partial x_{k}} . \tag{20}
\end{equation*}
$$

Using formula (3) we have

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=\alpha(x) \sum_{k=1}^{3} \epsilon_{i j k} \frac{\partial F(x)}{\partial x_{k}} . \tag{21}
\end{equation*}
$$

This is just formula (14).

Theorem 2 is more complete and general than the conclusion in [10]. When it is applied to such manifolds as the undeformed (respectively, q-deformed) two-dimensional sphere, the one sheet hyperboloid and the elliptic paraboloid, one gets [10] the Lie (respectively, q-deformed) algebra of $S U(2), S U(1,1)$ and the harmonic oscillator algebra $\mathcal{H}(4)$ [11]. Here one notes that if $F(x)=0$ defines a smooth two-dimensional symplectic manifold M in \mathbb{R}^{3}, then $\alpha(x) F(x)=0, \alpha(x) \neq 0, \forall x \in \mathbb{R}^{3}$, also defines the same manifold M. By formula (14) we see that $F(x)=0$ and $\alpha(x) F(x)=0$ give rise to the same Poisson algebra under the algebraic equivalence we stated before theorem 2 .

As $F \in \mathcal{F}$, we have that

$$
\frac{\partial}{\partial x_{j}}\left(\frac{\partial F(x)}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial F(x)}{\partial x_{j}}\right) \quad i, j=1,2,3 .
$$

Therefore, the Poisson algebra given by (14) is by definition integrable and it is uniquely given by the manifold M. It is also direct to check that $F(x)$ is the centre of the Poisson algebra, i.e. $\left[x_{i}, F(x)\right]_{\mathrm{PB}}=0, i=1,2,3$. Moreover, from the Poisson algebraic relations (14) one has

$$
\begin{equation*}
[f, g]_{\mathrm{PB}}(x)=-\sum_{i, j, k=1}^{3} \epsilon_{i j k} \frac{\partial f}{\partial x_{i}} \frac{\partial F}{\partial x_{j}} \frac{\partial g}{\partial x_{k}}(x) \tag{22}
\end{equation*}
$$

for $f, g \in \mathcal{F}$.
Theorems 1 and 2 establish the correspondence between two-dimensional symplectic manifolds and Poisson algebras with three generators. In what follows we study some properties related to smooth Poisson algebraic maps.

Let A (respectively B) be two integrable Poisson algebras with related two-dimensional manifolds M_{A} (respectively M_{B}) defined by $F_{A}(x)=0$ (respectively $F_{B}(y)=0$) in \mathbb{R}^{3}, where $x=\left(x_{1}, x_{2}, x_{3}\right)$ (respectively $\left.y=\left(y_{1}, y_{2}, y_{3}\right)\right)$ are the generators of the algebra A (respectively B). We call a smooth map $\tilde{y}(x), x$ as before and \tilde{y} a generator of the Poisson algebra B, a smooth Poisson algebraic map.

Theorem 3. If the smooth Poisson algebraic map $\tilde{y}(x)=\left(\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right)(x)$ between integrable Poisson algebras A and B satisfies the commutator relations of B, then \tilde{y} satisfies $F_{B}(\tilde{y})=0$.

Proof. From theorem 2 the Poisson algebra A is given by

$$
\left[x_{i}, x_{j}\right]_{\mathrm{PB}}=\sum_{i, j, k=1}^{3} \epsilon_{i j k} \frac{\partial F_{A}(x)}{\partial x_{k}} .
$$

Using formula (22) we have

$$
\begin{equation*}
\left[\tilde{y}_{i}, \tilde{y}_{j}\right]_{\mathrm{PB}}(x)=-\sum_{l, m, n=1}^{3} \epsilon_{l m n} \frac{\partial \tilde{y}_{i}}{\partial x_{l}} \frac{\partial F_{A}}{\partial x_{m}} \frac{\partial \tilde{y}_{j}}{\partial x_{n}}(x) \tag{23}
\end{equation*}
$$

Since $F_{A}(x)=0$, we have that the $x_{i}, i=1,2,3$, are not independent. Without loss of generality, we take x_{1} and x_{2} to be independent. By using the relation

$$
\sum_{i=1}^{3} \frac{\partial F_{A}(x)}{\partial x_{i}} \mathrm{~d} x_{i}=0
$$

equation (23) becomes

$$
\begin{equation*}
\left[\tilde{y}_{i}, \tilde{y}_{j}\right]_{\mathrm{PB}}(x)=\frac{\partial F_{A}}{\partial x_{3}}\left(\frac{\partial \tilde{y}_{i}}{\partial x_{1}} \frac{\partial \tilde{y}_{j}}{\partial x_{2}}-\frac{\partial \tilde{y}_{i}}{\partial x_{2}} \frac{\partial \tilde{y}_{j}}{\partial x_{1}}\right)(x) \tag{24}
\end{equation*}
$$

From theorem 2 the Poisson algebra B is given by

$$
\left[y_{i}, y_{j}\right]_{\mathrm{PB}}=\sum_{i, j, k=1}^{3} \epsilon_{i j k} \frac{\partial F_{B}(y)}{\partial y_{k}} .
$$

Hence if the smooth map $\tilde{y}(x)=\left(\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right)(x)$ satisfies the commutator relation of the algebra B, then

$$
\begin{equation*}
\left[\tilde{y}_{i}, \tilde{y}_{j}\right]_{\mathrm{PB}}(x)=\sum_{i, j, k=1}^{3} \epsilon_{i j k} \frac{\partial F_{B}(\tilde{y})}{\partial \tilde{y}_{k}}(x) . \tag{25}
\end{equation*}
$$

From (24) and (25) we obtain

$$
\begin{equation*}
\frac{\partial F_{A}}{\partial x_{3}}\left(\frac{\partial \tilde{y}_{i}}{\partial x_{1}} \frac{\partial \tilde{y}_{j}}{\partial x_{2}}-\frac{\partial \tilde{y}_{i}}{\partial x_{2}} \frac{\partial \tilde{y}_{j}}{\partial x_{1}}\right)=\sum_{i, j, k=1}^{3} \epsilon_{i j k} \frac{\partial F_{B}(\tilde{y})}{\partial \tilde{y}_{k}} \tag{26}
\end{equation*}
$$

Equation (26) represents three different equations for $i=1, j=2 ; i=2, j=3$; and $i=3, j=1$. Multiplying these equations by $\partial \tilde{y}_{3} / \partial x_{l}, \partial \tilde{y}_{1} / \partial x_{l}$ and $\partial \tilde{y}_{2} / \partial x_{l}, l=1,2$, respectively, and summing these equations together we get

$$
\frac{\partial F_{B}(\tilde{y})}{\partial x_{l}}=0 \quad l=1,2
$$

Therefore $F_{B}(\tilde{y})$ is independent of $x_{l}, l=1,2$, and thus $F_{B}(\tilde{y})=$ constant. This constant can be taken to be zero, since addition of a constant does not change the Poisson algebraic structure of the manifold.

Theorem 4. If the map $\tilde{y}(x)=\left(\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right)(x)$ satisfies $F_{B}(\tilde{y})=0$, where x satisfies $F_{A}(x)=0$, then \tilde{y} generates the Poisson algebra B.

Proof. From theorem 2 we know that there is a unique Poisson algebra B associated with the manifold M_{B} (up to the algebraic equivalence). Hence if \tilde{y} satisfies $F_{B}(\tilde{y})=0$, then \tilde{y} generates the algebra B.

Summarizing, we have discussed the relations between integrable Poisson algebraic structures and two-dimensional symplectic manifolds and have proved that there is a unique relation between integrable Poisson algebras and two-dimensional symplectic manifolds. We have also shown that a sufficient and necessary condition for a smooth Poisson algebraic map $\tilde{y}(x)$ to act from an integrable Poisson algebra A into an integrable Poisson algebra B is that both $F_{A}(x)=0$ and $F_{B}(\tilde{y})=0$ are satisfied. The latter conclusions can be extended to the infinite-dimensional case, see [12].

Acknowledgments

We are very grateful to Dipl. Math. Hanno Gottschalk for a critical reading of the manuscript and stimulating discussions. We would like to thank the A v Humboldt Foundation for the financial support given to SMF.

References

[1] Abraham R and Marsden J E 1967 Foundations of Mechanics 2nd edn (Reading, MA: Addison-Wesley, Benjamin/Cummings)
[2] Moyal J E 1949 Quantum mechanics as a statistical theory Proc. Camb. Phil. Soc. 4599
[3] Karasev M V and Maslov V P 1993 Nonlinear Poisson Brackets, Geometry and Quantization (Translations of Mathematical Monographs 119) (Providence, RI: American Mathematical Society)
[4] Flato M and Sternheimer D 1994 Algebra Analiz 6 242-51
[5] Bhaskara K H and Viswanath K 1988 Poisson Algebras and Poisson Manifolds (Pitman Research Notes in Mathematics Series 174) (Harlow: Longman)
[6] Sniatycki J 1980 Geometric Quantization and Quantum Mechanics (Berlin: Springer)
[7] Woodhouse N 1980 Geometric Quantization (Oxford: Clarendon)
[8] Hofer H and Zehnder E 1994 Symplectic Invariants and Hamiltonian Dynamics (Basel: Birkhäuser)
[9] Aebischer B, Borer M, Kälin M, Leuenberger Ch and Reimann H M 1994 Symplectic Geometry (Progress in Mathematics 124) (Basel: Birkhäuser)
[10] Fei S M and Guo H Y 1991 J. Phys. A: Math. Gen. 24 1-10
Fei S M 1991 J. Phys. A: Math. Gen. 24 5195-214
Fei S M and Guo H Y 1991 Commun. Theor. Phys. 16 79-88
Fei S M and Guo H Y 1993 Commun. Theor. Phys. 20 299-312
[11] Gilmore R 1974 Lie Groups, Lie Algebras and Some of Their Applications (New York: Wiley) Miller W Jr 1972 Symmetry Groups and Their Applications (New York: Academic)
Chaichian M and Ellinas D 1990 J. Phys. A: Math. Gen. 23 L291-L296
Chaichian M and Kulish P 1990 Phys. Lett. 234B 72
[12] Albeverio S and Fei S M 1996 Current algebraic structures over manifolds: Poisson algebras, q-deformations and quantization SFB 237-Preprint (to appear in J. Geom. Phys.)

